Product Information

Fluoroplastics of Daikin Industries

NEOFLON™
CTFE
Molding Powders

Introduction

NMEOFLON CTFE is a homopolymer of chlorotrifluoroethylene, characterized by the chemical formula.

The addition of the one chlorine bond to fluorocarbon contributes to lower the melt viscosity to permit extrusion molding. It also contributes to the transparency, the exceptional flow, and the rigidity characteristics of the polymer.

Therefore, NEOFLON CTFE has unique properties. Its resistance to cold flow, dimensional stability, rigidity, low gas permeability, and low moisture absorption are superior to other fluoropolymers.

TM: DAIKIN INDUSTRIES Trade mark for Fluorocarbon Polymer.
Index
1. Feature ... 2
2. Grades ... 3
 Table 1. Grades of NEOFLON CTFE ... 3
3. Applications .. 3
4. Properties .. 6
 4-1. Physical Properties ... 6
 Table 2. Typical Physical Properties of NEOFLON CTFE 6
 Fig.1 Tensile Strength (at break point) at Various Temperatures 7
 Fig.2 Tensile Modulus of Elasticity at Various Temperatures 7
 Fig.3 Elongation at Various Temperatures .. 8
 Fig.4 Effect of Temperature on the Hardness of the NEOFLON CTFE Moldings 8
 Fig.5 Stress-Strain Curves (Compression method) ... 9
 Fig.6 Creep Curves ... 9
 4-2. Thermal Properties .. 10
 Table 3. Thermal Properties of NEOFLON CTFE .. 10
 Fig.7 Coefficient of Liner Thermal Expansion at Various Temperatures 10
 4-3. Chemical Properties .. 11
 Table 4. Immersion Test (for 7 days) ... 11
 4-4. Electric Properties ... 12
 Table 5. Electric Properties of NEOFLON CTFE .. 12
 Fig.8 Dielectric Constant at Various Frequencies 13
 Fig.9 Dielectric Constant at Various Temperatures 13
 Fig.10 Dielectric Dissipation Factor at Various Temperatures 14
 Fig.11 Dielectric Strength at Various Thicknesses 14
 Fig.12 Arc Resistance ... 15
 Fig.13 Volume Resistivity at Various Temperature 16
 4-5. Other Properties .. 16
5. Processing and Fabrication ... 17
 5-1. Compression Molding .. 17
 5-2. Extrusion Molding ... 17
 5-3. Machining .. 18
 5-4. Heat Sealing ... 18
1. Features

NEOFLOMN CTFE is a high performance thermoplastic. Chlorine and fluorine in the molecule contribute to the combination of outstanding properties and good melt-flow processability.
Features of NEOFLON CTFE has high compressive strength and low deformation under load.
In particular, its cold-flow characteristic is lower than other fluoropolymers and it does not deform under load at room temperature.
In addition, PCTFE retains its excellent properties over a wide thermal range.

Zero strength time (ZST)
The ZST is a test method to check the molecular weight of the PCTFE molding materials and the molded parts. It will give both the molder and customer a good indication of the quality of molded parts.
This method is described in detail in ASTM D1430-89.
The ZST of the M-300 series is 200 to 300 seconds, while that of M-400H is 301 to 450 seconds because of a higher molecular weight grade.

Crystallinity
NEOFLOMN CTFE is a crystalline polymer.
The degree and kind of crystallinity may be controlled by its thermal history, especially the cooling speed during processing.
In general, its range may be approximately from 40% to 80%, but it is never completely crystalline or amorphous. Molded PCTFE with high crystallinity is a dense material which has high mechanical strength and low elongation.
On the other hand, the amorphous rich PCTFE moldings are optically clear, more elastic, and have a lower density.
Although the rapid-cooling procedure is only applied for thin-wall tubings and sheets, heavy wall products should be cooled slowly to prevent cracks or voids.
Long chain molecules in high molecular weight PCTFE are slow to develop crystal nuclei and may prevent rearrangement into large spherulites.
2. Grades

NEOFLON CTFE molding materials contain no plasticizers, fillers, or other additives. They are available in the following series:
M-300 series (M-300, M-300H, M-300P)
 — ASTM D1430-89 Type 1, Grade 1
M-400H — ASTM D1430-89 Type 1, Grade 2

Material grade
Each type is available in either powder or pellet form. The M-300 series consists of molding materials for general purpose applications.
M-400H consists of molding materials of a high molecular weight which are suitable for applications requiring mechanical toughness or stress-crack resistance.

Table 1 Grades of NEOFLON CTFE

<table>
<thead>
<tr>
<th>Product no.</th>
<th>Apparent density (g/cc) (approx.)</th>
<th>*Flow value (cc/sec)</th>
<th>**Z.S.T. (sec)</th>
<th>Description</th>
<th>Processing methods</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-300</td>
<td>0.60</td>
<td>1—3×10⁻³</td>
<td>200~300 Powders (10—80 meshes)</td>
<td>Compression</td>
<td>Sheets</td>
<td></td>
</tr>
<tr>
<td>M-300H***</td>
<td>1.00</td>
<td>1—3×10⁻³</td>
<td>200~300 Granular powders</td>
<td>Extrusion</td>
<td>Sheets, Rods, Tubing</td>
<td></td>
</tr>
<tr>
<td>M-300P***</td>
<td>1.20</td>
<td>1—3×10⁻³</td>
<td>200~300 Pellets</td>
<td>Injection</td>
<td>Rods, Small parts</td>
<td></td>
</tr>
<tr>
<td>M-400H***</td>
<td>1.00</td>
<td>0.5—0.8×10⁻³</td>
<td>301~450 Granular powders</td>
<td>Extrusion</td>
<td>Sheets, Rods</td>
<td></td>
</tr>
</tbody>
</table>

Note:
* Measured by flow tester at 230°C, under load 100MPa (nozzle size 1 mm dia, 1mm length)
*** ASTM D 1430-89, zero strength time at 250°C
**** Recognized by Underwriters’ Laboratories, Inc.

3. Applications

The unique balance of properties exhibited by NEOFLON CTFE suits it to many applications where usual other materials are unsatisfactory.

- Chemical field
 Seals and gaskets
 Valve and pump parts — diaphragms, impellers, seats, and plugs
 Translucent tubing, sight glasses, and flowmeter tubes
 Heavy-wall solid pipe and fittings
 Gears, cams, and bearings
 Laboratory ware
 Coatings for pipes, fittings, valves, heat exchangers, pumps, tanks, reaction vessels, autoclaves, drums, and containers
 Anti-sticking surfaces — rolles on textile
 Anti-sticking surfaces — rollers on textile
 Machines, suction boxes, molds for plastics, and equipment for the processing of toffee, dough, chocolate, and other foodstuff
 Thin-walled articles — jackets, bellow, diaphragms, films, and various laboratory instruments

- Electrical field
 Molded components, terminal boards, coil forms, printed circuit boards, connector covers, radome covers, tube sockets, wire coatings, jackets, potentiometers, and switches
Molded products made from NEOFLON CTFE

Reaction equipment and piping connector for anhydrous hydrogen fluoride made from NEOFLON CTFE

Gear pump made from NEOFLON CTFE Solenoid valve component machined made from NEOFLON CTFE
Butterfly valves for cryogenic applications
(NEOFLO M CTF is used.)

Butterfly valves for cryogenic applications were developed for large pipes which are used to transport cryogenic fluids. They are mainly used in storage and transport bases of liquefied natural gas or in its transport ship. NEOFLON CTFE which is characterized by its excellent stability at low temperatures, is used for the seat of the valve for safety, and at the sealing area for easy operation, making highly reliable sealing performance possible. Because NEOFLON CTFE has high mechanical strength and a low shrinkage rate at low temperatures, it is widely used for low-temperature machineries, equipment, etc.

(Note) • Diameter 80〜700mm (standard)
• Maximum pressure 10kg/cm²G
• Applicable materials
 Low-temperature fluids and gases, such as LNG・LO₂・LN₂・LH₂・LPG
• Usable temperature
 −250°〜normal temperature

As a guide, the main application specifications relative to PCTFE are as follows:
• Grade classifications of molding materials
 ASTM D 1430-89
• Molded parts
 MIL-P-46036B
 AMS-3650A
 AMS-3646A
 AMS-3648A
 AMS-3649B
 NAA-PBU-130-005
 NAA-PBU-130-009
4. Properties

4-1. Physical Properties

Resistance to Stress-Cracking

As M-400H consists of higher molecular weight polymers than those of the M-300 series, M-400H is suitable for use in applications requiring stress-crack resistance.

Table 2 Typical Physical Properties of NEOFLON CTFE

<table>
<thead>
<tr>
<th>Property</th>
<th>Test method (ASTM)</th>
<th>Units</th>
<th>NEOFLON CTFE M-300H</th>
<th>M-400H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity</td>
<td>D-792</td>
<td>2.11~2.16</td>
<td>2.11~2.16</td>
<td></td>
</tr>
<tr>
<td>Zero strength time</td>
<td>D-1430</td>
<td>sec</td>
<td>200~300</td>
<td>350~450</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>D-638</td>
<td>MPa [psi]</td>
<td>31.437.2 [45705430]</td>
<td>33.339.2 [48605710]</td>
</tr>
<tr>
<td>Elongation</td>
<td>D-638</td>
<td>%</td>
<td>50~200</td>
<td>100~250</td>
</tr>
<tr>
<td>Tensile modulus of elasticity</td>
<td>D-638</td>
<td>MPa [psi]</td>
<td>(1.31.5)×10⁴ [185214×10⁶]</td>
<td>(1.21.4)×10⁴ [171200×10⁶]</td>
</tr>
<tr>
<td>Compression strength</td>
<td>D-695</td>
<td>MPa [psi]</td>
<td>3944 [57106430]</td>
<td>3641 [52806000]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1% strain</td>
<td>1214 [17102000]</td>
<td>1113 [15701860]</td>
</tr>
<tr>
<td>Compression modulus of elasticity</td>
<td>D-695</td>
<td>Mpa [psi]</td>
<td>(1.41.6)×10³ [(200228)×10³]</td>
<td>(1.21.4)×10³ [(171200)×10³]</td>
</tr>
<tr>
<td>Flexural strength</td>
<td>D-790</td>
<td>MPa [psi]</td>
<td>6873 [986010600]</td>
<td>6671 [957010300]</td>
</tr>
<tr>
<td>Flexural modulus elasticity</td>
<td>D-790</td>
<td>MPa [psi]</td>
<td>(1.61.9)×10³ [228271×10³]</td>
<td>(1.41.7)×10³ [200243×10³]</td>
</tr>
<tr>
<td>Impact strength</td>
<td>D-256</td>
<td>ft-lb/in</td>
<td>2.5~3.5</td>
<td>2.5~3.5</td>
</tr>
<tr>
<td>Hardness (Shore: durometer)</td>
<td></td>
<td>D85~D95</td>
<td>D85~D95</td>
<td></td>
</tr>
<tr>
<td>Deformation under load</td>
<td>D-621</td>
<td>25°C (77°F)</td>
<td>% ≤0.2</td>
<td>≤0.2</td>
</tr>
<tr>
<td>24 hrs/70kg (1000psi)</td>
<td></td>
<td>80°C (176°F)</td>
<td>1.7~1.9</td>
<td>1.4~1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100°C (212°F)</td>
<td>7.0~9.0</td>
<td>4.5~6.5</td>
</tr>
</tbody>
</table>
Tensile Properties

The tensile test is conducted by using the JIS K6301 Dumbbell #3 specimen which is illustrated below.

Thickness of parallel portion: 3max.

Fig. 1 Tensile Strength (at break point) at Various Temperatures

Fig. 2 Tensile Modulus of Elasticity at Various Temperatures
Fig. 3 Elongation at Various Temperatures

![Graph showing elongation at various temperatures for M-300H with tensile speeds of 4 mm/min and 1,000 mm/min.]

Fig. 4 Effect of Temperature on the Hardness of the NEOFLON CTFE Moldings

![Graph showing hardness durometer (Shore D) for M-300H and M-400H at various temperatures.]

Hardness
Compression Properties

Fig. 5 Stress-Strain Curves (Compression method)
Test conditions:
1. Compression speed 1mm/min.
2. Size of the specimen dia. 12.7mm × height 25.4mm (M-300H, M-400H molded by compression molding)
3. Temperature 23°C

Fig. 6 Creep Curves
Test condition:
Size of the specimen dia. 11.3mm × height 10mm (M-300H, M-400H molded by compression molding)
4-2. Thermal Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Test method (ASTM)</th>
<th>Units</th>
<th>NEOFLON CTFE (typical value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific heat</td>
<td></td>
<td>cal/g°C</td>
<td>0.22</td>
</tr>
<tr>
<td>Melting point</td>
<td></td>
<td>°C°F</td>
<td>210212°F 410414°F</td>
</tr>
<tr>
<td>Heat deflection temperature (66psi)</td>
<td>D-648</td>
<td>°C°F</td>
<td>126°F 259°F</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>C-177</td>
<td>cal/cm, sec, °C BTU/ft., hr., °F</td>
<td>5×10⁻⁴ 1.45</td>
</tr>
<tr>
<td>Thermal expansion</td>
<td>D-696</td>
<td>cm/cm°C (in/in°F)</td>
<td>7×10⁻⁵ (3.9×10⁻⁵)</td>
</tr>
<tr>
<td>+30~−30°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+80~−22°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−30~−100°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(−22~−140°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−100~−190°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(−140~−310°F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flammability</td>
<td>D-635</td>
<td></td>
<td>non-flammable</td>
</tr>
</tbody>
</table>

Fig. 7 Coefficient of Linear Thermal Expansion at Various Temperature
Size of the specimen dia. 7mm×length 10mm
(M-300H and M-400H molded by compression molding)
4-3. Chemical Properties

Due to its molecular structure, NEOFLON CTFE possesses excellent chemical resistance, with the exception of some highly halogenated hydrocarbons and aromatic solvents. The following table shows the effect of chemicals on PCTFE at various temperatures:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Conc. (%)</th>
<th>Temp. (°C)</th>
<th>Weight change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochloric acid</td>
<td>10</td>
<td>25</td>
<td>0.0</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>96</td>
<td>70</td>
<td>0.0</td>
</tr>
<tr>
<td>Nitric acid</td>
<td>70</td>
<td>70</td>
<td>0.0</td>
</tr>
<tr>
<td>Fluoric acid</td>
<td>50</td>
<td>25</td>
<td>0.0</td>
</tr>
<tr>
<td>Acetic acid</td>
<td>50</td>
<td>175</td>
<td>0.1</td>
</tr>
<tr>
<td>Chromic acid</td>
<td>50</td>
<td>175</td>
<td>0.0</td>
</tr>
<tr>
<td>Acetic acid anhydride</td>
<td>70</td>
<td></td>
<td>+0.1</td>
</tr>
<tr>
<td>Caustic soda</td>
<td>50</td>
<td>b.p.</td>
<td>+0.1</td>
</tr>
<tr>
<td>Aqueous ammonia</td>
<td>25</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Potassium bichromate</td>
<td>Saturation</td>
<td>175</td>
<td>0.0</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>Saturation</td>
<td>175</td>
<td>0.0</td>
</tr>
<tr>
<td>Methyl alcohol</td>
<td>25</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>80</td>
<td>25</td>
<td>+0.2</td>
</tr>
<tr>
<td>Acetone</td>
<td>25</td>
<td></td>
<td>+0.1</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>70</td>
<td></td>
<td>+9.7</td>
</tr>
<tr>
<td>Chloroform</td>
<td>90</td>
<td></td>
<td>+8.5</td>
</tr>
<tr>
<td>Trichloethylene</td>
<td>80</td>
<td></td>
<td>+9.2</td>
</tr>
<tr>
<td>Toluene</td>
<td>110</td>
<td></td>
<td>+5.0</td>
</tr>
<tr>
<td>Xylene</td>
<td>90</td>
<td></td>
<td>+6.5</td>
</tr>
<tr>
<td>Benzene</td>
<td>90</td>
<td></td>
<td>+7.0</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>90</td>
<td></td>
<td>+4.5</td>
</tr>
<tr>
<td>Methylethylketone</td>
<td>90</td>
<td></td>
<td>+4.6</td>
</tr>
<tr>
<td>Aniline</td>
<td>70</td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>70</td>
<td>25</td>
<td>+6.5</td>
</tr>
<tr>
<td>Ether</td>
<td>25</td>
<td></td>
<td>+3.8</td>
</tr>
<tr>
<td>Dioxan</td>
<td>90</td>
<td></td>
<td>+5.7</td>
</tr>
<tr>
<td>Diethylamine</td>
<td>25</td>
<td></td>
<td>+1.9</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>135</td>
<td></td>
<td>+0.7</td>
</tr>
<tr>
<td>Phenol</td>
<td>70</td>
<td></td>
<td>0.0</td>
</tr>
</tbody>
</table>
4-4. Electrical Properties

NEOFLOON CTFE possesses excellent electrical properties; however, unlike PTFE, it will polarize because it contains chlorine atoms and fluorine atoms. Breakdown voltage, dielectric constant, dissipation factor, arc resistance of NEOFLOON CTFE and various factors which affect these properties are described below.

Table 5 Electrical Properties of NEOFLOON CTFE

<table>
<thead>
<tr>
<th>Properties</th>
<th>Test method (ASTM)</th>
<th>Unit</th>
<th>NEOFLOON CTFE (typical value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric constant 10^3 Hz</td>
<td>D-150</td>
<td></td>
<td>2.6</td>
</tr>
<tr>
<td>Dielectric dissipation factor 10^3 Hz</td>
<td>D-150</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Dielectric strength Short time</td>
<td>D-149</td>
<td>Volt/Mil</td>
<td>3000</td>
</tr>
<tr>
<td>4 mils thickness</td>
<td></td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>68 mils thickness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arc resistance</td>
<td>D-495</td>
<td>sec</td>
<td>360</td>
</tr>
<tr>
<td>Volume resistivity 50% R.H.</td>
<td>D-257</td>
<td>ohm-cm</td>
<td>2×10^{17}</td>
</tr>
<tr>
<td>Surface resistivity 100% R.H.</td>
<td>D-257</td>
<td>ohm-cm</td>
<td>1×10^{15}</td>
</tr>
</tbody>
</table>
Fig. 8 Dielectric Constant at Various Frequencies

Fig. 9 Dielectric Constant at Various Temperatures
Fig. 10 Dielectric Dissipation Factor at Various Temperatures

Fig. 11 Dielectric Strength at Various Thicknesses
Test conditions:
Shape of electrode 2 disc electrodes (diameter 25mm) with rounded edge of 2.5mm radius, 500g
Methods of impressing voltage 1,000V/sec. (continuous rise)
Atmosphere Silicon oil (Toshiba TSF433), 25°C
Power source AC60Hz
Fig. 12 Arc Resistance
Test conditions:
Shape of electrode: 2 disc electrodes (diameter 25mm) with rounded edge of 2.5mm radius, 500g
Atmosphere: Dry (P2O5) air 23°C
Power source: AC60Hz

Thus, the following empirical formulas can be obtained:

\[
V_t = 4570 \sqrt{\frac{t}{\varepsilon}}
\]

\[
V_f = 4210 \sqrt{\frac{t}{\varepsilon}}
\]

\(V_t\) : Voltage at corona occurrence (V)
\(V_f\) : Voltage at corona disappearance (V)
\(t\) : Thickness of sample (mm)
\(\varepsilon\) : Dielectric constant of sample
4-5. Other Properties

(1) Gas permeability
NEOFLON CTFE has extremely low gas permeability.

<table>
<thead>
<tr>
<th>Gas permeability constant</th>
<th>NEOFLON CTFE</th>
<th>FEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂ cm³, cm²/sec, atm</td>
<td>0.18 x 10⁻¹⁰</td>
<td>120 x 10⁻¹⁰</td>
</tr>
<tr>
<td>O₂ cm³, cm²/sec, atm</td>
<td>1.5 x 10⁻¹⁰</td>
<td>370 x 10⁻¹⁰</td>
</tr>
<tr>
<td>H₂ cm³, cm²/sec, atm</td>
<td>56.4 x 10⁻¹⁰</td>
<td>1.080 x 10⁻⁹</td>
</tr>
<tr>
<td>CO₂ cm³, cm²/sec, atm</td>
<td>2.9 x 10⁻¹⁰</td>
<td>970 x 10⁻¹⁰</td>
</tr>
<tr>
<td>CH₄ cm³, cm²/sec, atm</td>
<td></td>
<td>66 x 10⁻¹⁰</td>
</tr>
</tbody>
</table>

(2) Moisture resistance
NEOFLON CTFE essentially does not absorb moisture. Its dimensional stability is not affected by direct contact with water or high humidity; therefore, NEOFLON CTFE retains its excellent electrical properties in a high humidity environment.

<table>
<thead>
<tr>
<th>Moisture permeability constant</th>
<th>NEOFLON CTFE</th>
<th>FEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/m, 24 hours</td>
<td>0.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Water absorption</td>
<td>%, 24 hours</td>
<td>0.00</td>
</tr>
<tr>
<td>% by weight, 168 hours</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
5. Processing and Fabrication

5-1. Compression Molding

(1) Transparent sheets
M-300 is used for the molding of transparent sheets. The powder is placed in a pile on the center of a ferro-type plate, and heated to 250～300°C (482～527°F) between the platens of the press.
The appropriate gauge block is placed on the side of the ferro-type plate. When the polymer reaches the desired state, another ferro-type plate is placed on the top of the powder and a pressure of 2.0～9.8MPa (290～1400psi.) is applied. After holding for a while, the assembly is transferred to cool press platens and quenched under 2.0～9.8MPa (290～1400psi.).

(2) Heavy wall articles
Both the M-300H and the M-400H are used for molding heavy wall parts, such as sheets, rods, and sleeves. M-300 and M-300H are used for compression molding of heavy shaped articles. The powder is heated at a temperature of 260～300°C (500～572°F) in a mold until it reaches molten state. Then a pressure of 3.9～9.8MPa (570～1400psi.) is applied slowly. The assembly is then transferred to a cool press and cooled under pressure of 9.8～49.0MPa (1400～7000psi.) slowly.

5-2 Extrusion Molding

M-300H, M-300P and M-400H are used for molding rods, tubings, and films by the conventional extrusion process. The recommended grades in each application are as follows:
Rods — M-300 series and M-400H
Tubings — M-300 series
Films — M-300 series
Suggested operating conditions are:
Extruder
Barrel dia. 25～50mm
L/D 20～25
Screw
Gradual transition metering type
Compression ratio 2.5～3.0
Operating temperature
(M-300H) (M-400H)
Barrel (rear) 230°C(446°F) 230°C(446°F)
(center) 280°C(536°F) 280°C(536°F)
(front) 290°C(554°F) 295°C(563°F)
Adapter 295°C(563°F) 300°C(572°F)
Die head 310°C(590°F) 315°C(599°F)
Die tip 320°C(608°F) 325°C(617°F)
Screw speed 10～15rpm
5-3. Machining

NEOFLOLON CTFE has good machining properties for sawing, turning, drilling, milling, and cutting, because of its high melt temperature. Desirable parts may be easily obtained by machining the standard stock, such as sheets, rods, shaped pieces, etc. The PCTFE molded parts can be buffed and polished with general paste.

5-4. Heat Sealing

NEOFLOLON CTFE films and sheets may be heat-sealed under certain conditions.

Heating temperature

260~280°C (500~536°F)

Heating time

Approx. 10 minutes for every 2mm sheet (thickness).

Operating pressure

Approx. 6.9Mpa (1000 psi)

Cooling rate

Rapid cooling (250°C (450°F)/30min.)
Caution on handing

- WARNING: VAPORS HARMFUL IF INHALED.
The work area should be adequately ventilated at all times, because HF, COF₂ begin to be produced at approximately higher than 150°C and the volume increases at approximately 250°C. If PCTFE is incinerated, the acidic gases must be removed by alkaline scrubbing techniques.
- Personnel should be cautioned against inhaling the fumes liberated during processing and provided with suitable protective equipment.
- Smoking should be prohibited in work areas, since smoking fluoropolymer contaminated tobacco may result in inhalation of decomposed gas. Do not bring tobacco in the work area.
- Avoid breathing dust and contact with eyes.
- Wash hands and face after handing.
- Waste generated during processing should be treated by waste treatment specialists and/or licensed waste contactor disposed of in accordance with federal, state and local waste disposal regulations.
- Read the "Material Safety Data Sheet" before use.

DAIKIN INDUSTRIES, LTD. and DAIKIN AMERICA, INC. have obtained the ISO 14001 (*1) certification which is an International Standard concerning the environmental management system and ISO 9002 (*2) concerning quality guaranteed in our factories.

*1. ISO 14001 is a standard established by the ISO (International Organization for Standardization) which applies to environmental preservation activities. Activities, products and services of our fluorochemicals plant have been certified as being environmentally sound by an internationally recognized certification body.

*2. ISO 9002 is a plant certification system for quality control established by the ISO which certifies our quality control system concerning manufacture and inspection of the products manufactured at our plant (division).

IMPORTANT NOTICE: The information contained herein is based on technical data and tests we believe to be reliable and is intended for use by persons having technical knowledge and skill, solely at their own discretion and risk. Since conditions of use are outside of our control, we assume no responsibility for results obtained or damages incurred through application of the data given; and the publication of the information herein shall not be understood as permission or recommendation for the use of our fluorocarbon compounds in violation of any patent or otherwise. We only warrant that the product conforms to description and specification, and our only obligation shall be to replace goods shown to be defective or refund the original purchase price thereof.

MEDICAL USE: This product is not specifically designed or manufactured for use in implantable medical and/or dental devices. We have not tested it for such application and will only sell it for such use pursuant to contract containing specific terms and conditions required by us.

DAIKIN INDUSTRIES, LTD.
Umeda Center Bldg.,
2-4-12, Nakazaki-Nishi, Kitaku,
Osaka 530-8323, Japan.
Phone: +81-6-6373-4346
Facsimile: +81-6-6373-4389
URL: www.daikin.co.jp/chm

DAIKING AMERICA, INC.
20 Olympic Drive
Orangeburg, NY 10962, U.S.A.
Phone: +1-845-365-9500
Tool-Free: +1-800-365-9570
Facsimile: +1-845-365-9598
URL: www.daikin.com

DAIKING CHEMICAL EUROPE GmbH
Immermannstr. 65D
40210 Dusseldorf, Germany
Phone: +49-211-1840834
Facsimile: +49-211-1840732

Jun. 2001 EG-71h-1 (0002) AK
Printed in Japan