Machining instructions

QUADRANT Engineering Plastic Products’ stock shapes can be easily machined on ordinary metalworking and in some cases on woodworking machines. However, there are a few points, which are worth noting to obtain improved results.

In view of the poor thermal conductivity, relatively low softening and melting temperatures of thermoplastics, generated heat must be kept to a minimum and heat build up in the plastics part avoided. This is in order to prevent deformations, stresses, colour changes or even melting. Therefore:

- tools must be kept sharp and smooth at all times,
- feed rates should be as high as possible,
- tools must have sufficient clearance so that the cutting edge only comes in contact with the plastics material,
- a good swarf removal from the tool must be assured,
- coolants should be applied for operations where plenty of heat is generated (e.g. drilling).

Machining forces / clamping

Machining forces being lower for engineering plastics than for metals and the former deforming more easily if clamped too tightly, clamping pressures should be reduced. One should, however, avoid any unsafe condition where the plastics part could come out of the clamping tools. But as these materials are not as rigid as metals, it is essential to support the work adequately during machining in order to prevent deflection or deformation, e.g. thin walled tubes often require the use of an internal plug at the chucked end in order to allow accurate machining of bushings with respect to roundness and tolerances.

Tools

High speed steel (HSS) tools work well with many plastics. However, tungsten carbide (ground cutting edges!), ceramic or polycrystalline diamond (PCD) tooling is preferred for long production runs. This is essential when machining glass / carbon fibre reinforced, or graphite filled materials (long tool life and good surface finish). When machining TORLON® PAI or CELAZOLE® PBI, diamond coated or polycrystalline diamond tooling provides optimum results, but carbide tipped tools can be used in case of very short production runs.
Coolants

Apart from drilling and parting, coolants are not typically necessary for thermoplastic machining operations. Keeping the cutting area cool generally helps improve surface finish and tolerances.

When coolants are required, cooling liquids of the water soluble oil type generally do very well. They should, however, not be used when machining amorphous thermoplastics, such as PC 1000, PPSU 1000, PEI 1000, PSU 1000 and SEMITRON® ESd 410C, because these materials are susceptible to environmental stress-cracking. The most suitable coolants for these materials are pure water or compressed air.

When the use of cooling liquids of the soluble oil type or general purpose petroleum based cutting fluids cannot be avoided during the machining of amorphous thermoplastics (e.g. during drilling of large diameters and/or deep holes or during tapping operations), the parts should immediately after machining be thoroughly cleaned with isopropyl alcohol first and rinsed with pure water afterwards in order to reduce the risk of stress-cracking.

A strong jet of compressed air or coolant also directs or removes chips from the work area, avoiding them to interfere with the cutting tool and the workpiece.

Machining tolerances

The machining tolerances which are required for thermoplastics parts are in general considerably larger than those normally applied to metal parts. This is because of the higher coefficient of thermal expansion, lower stiffness and higher elasticity, eventual swelling due to moisture absorption (mainly with nylons) and possible deformations caused by internal stress-relieving during and after machining. The latter phenomenon mainly occurs on parts where machining causes asymmetric and / or heavy section changes, e.g. when machining a U-shape from a plate or a bush from solid rod. In such cases, a “balanced” machining on both sides of the stock shape's centreline, reducing warpage, or a thermal treatment (stress-relieving) after pre-machining and prior to final machining of the part may prove advantageous (see “Annealing procedure for QUADRANT EPP ‘Engineering Plastics’ ”).

As a guideline, for turned or milled parts, a machining tolerance of 0.1 to 0.2% of the nominal size can be applied without taking special precautions (min. tolerance for small sizes being 0.05 mm). In this respect, the ISO 2768, the DIN 7168 as well as the Swiss VKI-Recommendation "Toleranzen spanend hergestellter Kunststoff-Fertigteile" ("Tolerances for machined plastic parts") can be used as a guide. However, tighter tolerances are possible with very stable ‘Advanced Engineering Plastics’ such as CELAZOLE® PBI, TORLON® PAI, KETRON® PEEK, TECHTRON® PPS and SEMITRON® ESd 410C.
Turning

The continuous chip stream produced when turning and boring many thermoplastics can be handled well using suction nozzles, in this way avoiding the chip wrapping around the chuck, the tool or the workpiece.

See table page 6 for tool geometry, speeds and feeds.

Milling

Two flute end mills, face mills and shell mills with inserts as well as fly cutters can be used. Climb milling is normally recommended to help reduce heat by dissipating it into the chip and it often improves product surface finish.

See table page 6 for tool geometry, speeds and feeds.

Drilling

High speed steel twist drills work well, but plenty of heat is generated so that a cooling liquid should be applied, especially when hole depths are more than twice the diameter. In order to improve heat and swarf removal, frequent pull-outs (“peck drilling”) are necessary, especially for deep holes. For large diameter holes, it is advisable to use drills with a thinned web in order to reduce friction and consequently heat generation. It is also recommended for large holes to drill stepwise; e.g. a bore diameter of 50 mm should be made by drilling successively with Ø 12 and Ø 25 mm, then by expanding the hole further with larger diameter drills or with a single point boring tool.

For KETRON® PEEK-HPV, KETRON® PEEK-GF30, KETRON® PEEK-CA30, TECHTRON® HPV PPS, TORLON® PAI and CELAZOLE® PBI rods over 50 mm diameter, ERTALON® 66-GF30, ERTALYTE®, ERTALYTE® TX and KETRON® PEEK-1000 rods over 100 mm diameter, as well as for ERTALON® / NYLATRON® rods over 200 mm diameter, it is even recommended not to use high speed twist drills at all in order to avoid cracks, but to “bore” the holes on a lathe using a rigid, flat boring tool with its cutting edge perfectly set on centre-height (see picture).

When drilling or boring through-holes, feed should be reduced at the bottom of the cut in order to prevent the drill or flat boring tool from pulling through at the exit-side, causing chipping or breaking out. It is not recommended to hand feed the drill because the drill may “grab” and stress the material.
Sawing

Band saws, circular saws or reciprocating saws that have widely spaced teeth in order to assure good chip removal can be used. They should also have enough set to minimize the friction between the saw and the work and also to avoid close-in behind the cutting edge, causing excessive heat build-up and even blocking of the saw.

Proper clamping of shapes on the worktable is required to avoid vibrations and consequent rough cutting or even rupture.

Important: Reinforced materials such as ERTALON® 66-GF30, KETRON® PEEK-HPV, KETRON® PEEK-GF30, KETRON® PEEK-CA30, TECHTRON® HPV PPS, TORLON® 4301 PAI, TORLON® 5530 PAI and SEMITRON® E5d 410C, are preferably cut with a band saw which has a tooth pitch of 4 to 6 mm (CELAZOLE® PBI: 2 to 3 mm). Do not use circular saws, as this usually leads to cracks.

Moisture protective packaging

Quite some polymers absorb moisture from the environment. In time, this can cause swelling and affect part dimensions. Therefore it is important that high tolerance components machined from ERTALON® / NYLATRON®, SEMITRON® E5d 225, TORLON® PAI and CELAZOLE® PBI stock shapes are kept dry prior to installation. They should be stored in sealed bags with dessicant. An additional “coating” of all surfaces with a film of pure mineral grease or oil also helps to minimize moisture absorption.

Machined parts, which have absorbed moisture and consequently have changed in dimensions, can be dried to regain their original machined size because moisture absorption is a reversible process. This is preferably done in a vacuum oven until constant weight is achieved (60 – 70°C for ERTALON® / NYLATRON®, SEMITRON® E5d 225 and 150°C for TORLON® PAI and CELAZOLE® PBI). The drying time obviously depends on the moisture content of the parts as well as on their thickness, but a minimum of 24 hours per each 3 mm of part thickness should be considered.

Safety

To avoid any risks, the general industrial safety recommendations should be followed, as well as the eventual specific ones you can find in the QUADRANT Engineering Plastic Products “Material Safety Data Sheets” (available on www.quadrantepp.com).
ERTALYTE® / ERTALYTE® TX / KETRON® PEEK-HPV / KETRON® PEEK-GF30 / KETRON® PEEK-CA30 / TECHTRON® HPV PPS / TOLRON® PAI / CELAZOLE® PBI / SEMITRON® ESD 410C

With respect to their hardness and moderate toughness, it is recommended to observe some additional machining and design rules next to what has already been said earlier. This should prevent premature failure of these materials.

Sawing and drilling operations particularly, require a gentle machining approach. In design and assembly, stress concentrations should be avoided.

Especially CELAZOLE® PBI can be very challenging to machine and requires particular care. We recommend to use low cutting speeds and small cutting depths (max. 2 mm).

Some tips:
• Always use light to moderate clamping forces. Never try to force the plastics part.
• Avoid sharp “internal” corners. The radius of curvature should be at least 1 mm. Refer to figure 1.
• To avoid chipping the edges during turning, boring or milling, chamfered edges are advantageous, providing a smoother transition between the cutting tool and the plastics work. Refer to figure 2.
• Sharp V-threads should be avoided (plenty of notch-sensitive areas); threads with a rounded root should be applied whenever possible.
• The use of thread cutting and thread forming screws is not recommended. Particularly the latter create tremendous stresses around the hole and are most likely to cause cracking at that point.
• When tapping threads or assembling bolts in blind holes, do not force the bottom of the holes by the tap- or bolt-tip since this is likely to induce cracking.

R ≥ 1

≥ 1 x 45°

Fig. 1

Fig. 2

All information supplied by or on behalf of Quadrant Engineering Plastic Products in relation to its products, whether in the nature of data, recommendations or otherwise, is supported by research and believed reliable. Quadrant Engineering Plastic Products assumes no liability whatsoever in respect of application, processing or use made of the afore-mentioned information or products, or any consequence thereof. The buyer undertakes all liability in respect of the application, processing or use of the afore-mentioned information or product, whose quality and other properties he shall verify, or any consequence thereof. No liability whatsoever shall attach to Quadrant Engineering Plastic Products for any infringement of the rights owned or controlled by a third party in intellectual, industrial or other property by reason of the application, processing or use of the afore-mentioned information or products by the buyer.

CESTIDUR®, ERTALON®, ERTACETAL®, ERTALYTE®, NYLATRON®, KETRON®, TECHTRON®, FLUOROSINT® and SEMITRON® are registered trade marks of Quadrant.

CESTILENE, CESTICOLOR, CESTILITE and CESTITECH are trade names of Quadrant Engineering Plastic Products.

SYMALIT® is a registered trade mark of Symalit AG.

CELAZOLE® is a registered trade mark of Hoechst Celanese Corporation.

DELRIN® and TFEFLON® are registered trade marks of DuPont.

KETRON® PEEK® is made from genuine VICTREX® PEEK™ polymer: VICTREX® is a registered trade mark of Victrex plc. PEEK™ is a trade mark of Victrex plc.

RADEL® and TOLRON® are registered trade marks of Solvay Advanced Polymers.

STANYL® is a registered trade mark of DSM.

ULTEM® is a registered trade mark of General Electric Co. USA.
Table: Tool geometry, speeds and feeds for sawing, turning, milling and drilling.

<table>
<thead>
<tr>
<th>QUADRANT Engineering Plastics</th>
<th>TURNING</th>
<th>MILLING</th>
<th>DRILLING</th>
<th>SAWING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a: relief angle (*)</td>
<td>g: rake angle (*)</td>
<td>h: side cutting edge angle (*)</td>
<td>v: cutting speed (m/min)</td>
<td></td>
</tr>
<tr>
<td>s: feed (mm/rev.)</td>
<td>a: relief angle (*)</td>
<td>g: rake angle (*)</td>
<td>h: side cutting edge angle (*)</td>
<td></td>
</tr>
<tr>
<td>v: cutting speed (m/min)</td>
<td>s: feed (mm/rev.)</td>
<td>v: cutting speed (m/min)</td>
<td>s: feed (mm/rev.)</td>
<td></td>
</tr>
<tr>
<td>a: side relief angle (*)</td>
<td>g: rake angle (*)</td>
<td>h: side cutting edge angle (*)</td>
<td>v: cutting speed (m/min)</td>
<td></td>
</tr>
<tr>
<td>a: side relief angle (*)</td>
<td>g: rake angle (*)</td>
<td>h: side cutting edge angle (*)</td>
<td>v: cutting speed (m/min)</td>
<td></td>
</tr>
<tr>
<td>α = 60° – 15°</td>
<td>β = 10° – 15°</td>
<td>β = 10° – 15°</td>
<td>β = 10° – 15°</td>
<td></td>
</tr>
</tbody>
</table>

Recommended tool geometries, speeds and feeds for machining

<table>
<thead>
<tr>
<th>Material</th>
<th>a (°)</th>
<th>g (°)</th>
<th>h (°)</th>
<th>s (mm/rev.)</th>
<th>v (m/min)</th>
<th>t (mm)</th>
<th>l (mm)</th>
<th>u (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERTALON / NYLAFRON</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>CESTILINE</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>SYMALIT PVDF 3000</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>ERTACETAL</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>SEMITRON ES 225</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>ERTASYTE</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>TORNOL 4203 PAI</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>KETRON PEEK-1000</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>PC 3000</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>PPSU 1000</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>PEI 3000</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>PSU 1000</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.5</td>
<td>200 - 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>ERTALON 66 GF30</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.3</td>
<td>100 - 200</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>TORNOL 4203 PAI / 5530 PAI</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.3</td>
<td>100 - 200</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>KETRON PEEK-HPV / GF30 / CARB</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.3</td>
<td>100 - 200</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>TECHNOLON HPV / PPS</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.3</td>
<td>100 - 200</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>SEMITRON ES 50 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.3</td>
<td>100 - 200</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>CELAZOKE PB1</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.3</td>
<td>25 - 100</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>FLUOROSINT 207 / 500</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.3</td>
<td>25 - 100</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
<tr>
<td>SEMITRON ES 50 500 HR</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
<td>0.05 - 0.3</td>
<td>25 - 100</td>
<td>5 - 15</td>
<td>0 - 15</td>
<td>0 - 45</td>
</tr>
</tbody>
</table>
Regional Headquarters

ASIA-PACIFIC

108 Tai To Tsuen, Ping Shan
YUEN LONG - N.T. Hong Kong
Tel +852 (0) 24702683
Fax +852 (0) 24789966
epp.asia@qplas.com

EUROPE

I.P. Noord - R. Tavernierlaan 2
8700 TIELT - Belgium
Tel +32 (0) 51 42 35 11
Fax +32 (0) 51 42 33 00
epp.europe@qplas.com

NORTH AMERICA

2120 Fairmont Avenue
PO Box 14235 - READING, PA 19612-4235
Tel (800) 366 0300 / +1 610 320 6600
Fax (800) 366 0301 / +1 610 320 6868
epp.americas@qplas.com

Global quality standard

Global production & logistics

Global technical support

Quadrant Engineering Plastic Products

www.quadrantepp.com

Quadrant Engineering Plastic Products Companies Worldwide

BELGIUM

I.P. Noord - R. Tavernierlaan 2
8700 TIELT
Tel +32 (0) 51 42 35 11
Fax +32 (0) 51 42 33 00

epp.europe@qplas.com

GERMANY

Koblenzerstraße 38
56112 LAHNSTEIN
Tel +49 (0) 2621 6990
Fax +49 (0) 2621 69933

Am Leitzelbach 11
74889 SINSHEIM
Tel +49 (0) 7261 15 50
Fax +49 (0) 7261 15 51 55

HONG KONG

108 Tai To Tsuen, Ping Shan
YUEN LONG, N.T. Hong Kong
Tel +852 (0) 2 470 26 83
Fax +852 (0) 2 478 99 66

HUNGARY

Szláv g. 2-4
1108 BUDAPEST
Tel +36 (0) 1 264 4206
Fax +36 (0) 1 262 0145

INDIA

166 Vojnivihar,
DELHI 92
Tel +91 (0) 11 214 49 17
Fax +91 (0) 11 216 45 41

ITALY

Via Trento 39,
20017 Passirana di Rho,
MIANO
Tel +39 02 93 26 131
Fax +39 02 93 50 8451

JAPAN

5-2, Marunouchi 2-chome
Chiyoda-K, TOKYO 100
Tel +81 (0) 33 2834 267
Fax +81 (0) 33 2834 087

KOREA

97 Samjung-Dong
Ohjung-Ku, BUCHeon-CITY
Tel +82 (0) 32 673 9901
Fax +82 (0) 32 673 6322

MEXICO

Apartado Postal 13
52000 Leema,
EDO DE MEXICO
Tel +52 (728) 753 10
Fax +52 (728) 753 17

POLAND

UL Dziegielowa 7
61-680 POZNA\N
Tel +48 (0) 61 822 70 49 / 825 70 45
Fax +48 (0) 61 820 57 51

SOUTH AFRICA

25 Nickel Street, Technicon
P.O. Box 63
ROODEPOORT 1725
Tel +27 (0) 11 760-3100
Fax +27 (0) 11 763-2811

THE NETHERLANDS

Anthony Fokkerweg 2
7602 PK ALMELO
Tel +31 (0) 546 877 777
Fax +31 (0) 546 860 796

UNITED KINGDOM

83 Bridge Road East
WELWYN GARDEN CITY
Hertfordshire AL7 1LA
Tel +44 (0) 1707 361 833
Fax +44 (0) 1707 361 638

U.S.A.

2120 Fairmont Avenue - PO Box 14235
READING, PA 19612-4235
Tel (800) 366 0300 / +1 610 320 6600
Fax (800) 366 0301 / +1 610 320 6868